On Powers of 2 Dividing the Values of Certain Plane Partition Functions
نویسندگان
چکیده
We consider two families of plane partitions: totally symmetric self-complementary plane partitions (TSSCPPs) and cyclically symmetric transpose complement plane partitions (CSTCPPs). If T (n) and C(n) are the numbers of such plane partitions in a 2n× 2n× 2n box, then ord2(T (n)) = ord2(C(n)) for all n ≥ 1. We also discuss various consequences, along with other results on ord2(T (n)). 2000 Mathematics Subject Classification: 05A10, 05A17, 11P83
منابع مشابه
Two Equivalent Presentations for the Norm of Weighted Spaces of Holomorphic Functions on the Upper Half-plane
Introduction In this paper, we intend to show that without any certain growth condition on the weight function, we always able to present a weighted sup-norm on the upper half plane in terms of weighted sup-norm on the unit disc and supremum of holomorphic functions on the certain lines in the upper half plane. Material and methods We use a certain transform between the unit dick and the uppe...
متن کاملCertain subalgebras of Lipschitz algebras of infinitely differentiable functions and their maximal ideal spaces
We study an interesting class of Banach function algebras of innitely dierentiable functions onperfect, compact plane sets. These algebras were introduced by Honary and Mahyar in 1999, calledLipschitz algebras of innitely dierentiable functions and denoted by Lip(X;M; ), where X is aperfect, compact plane set, M = fMng1n=0 is a sequence of positive numbers such that M0 = 1 and(m+n)!Mm+n ( m!Mm)...
متن کاملThe upper domatic number of powers of graphs
Let $A$ and $B$ be two disjoint subsets of the vertex set $V$ of a graph $G$. The set $A$ is said to dominate $B$, denoted by $A rightarrow B$, if for every vertex $u in B$ there exists a vertex $v in A$ such that $uv in E(G)$. For any graph $G$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_p}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i rightarrow V_j$ or $V_j rightarrow...
متن کاملParity of the Partition Function and the Modular Discriminant
We relate the parity of the partition function to the parity of the q-series coefficients of certain powers of the modular discriminant using their generating functions. This allows us to make statements about the parity of the initial values of the partition function as well as obtain a modified Euler recurrence for its parity.
متن کاملUniqueness of meromorphic functions ans Q-differential polynomials sharing small functions
The paper concerns interesting problems related to the field of Complex Analysis, in particular, Nevanlinna theory of meromorphic functions. We have studied certain uniqueness problem on differential polynomials of meromorphic functions sharing a small function. Outside, in this paper, we also consider the uniqueness of $q-$ shift difference - differential polynomials of mero...
متن کامل